Apr 22

Light Field Lab: Startup is Working on Glasses-Free Holographic TV Sets

Light Field Lab: Startup is Working on Glasses-Free Holographic TV Sets using Light FIeld Tech (picture: Light Field Lab) At this week’s National Association of Broadcasters (NAB) show in Las Vegas, a startup named Light Field Lab has announced they’re developing the next big thing in display technology: glasses-free holographic TVs.
Founded by former Lytro specialists Jon Karafin (former Head of Light Field Video at Lytro), Brendan Bevensee (former Lead Engineer at Lytro) and Ed Ibe (former Lead Hardware Engineer at Lytro), the company is working on the “next generation of light field display technologies”. Continue reading

Apr 02

Avegant: New Light Field Display for better Augmented Reality Headsets

Avegant: New Light Field Display for better Augmented Reality Headsets (Mockup via RoadtoVR.com) Virtual Reality and Augmented Reality (or Mixed Reality) headsets have evolved quite a bit over the last few years. Improvements in resolution, lag, and other factors, have led to new, extremely immersive systems such as the HTC Vive. Hovewer, one missing feature is still holding back the technology:
Generally speaking, most of today’s displays consist of a two-dimensional display that’s placed at a fixed distance from the user’s eyes. This creates a conflict for our eyes and brain, which in the real world are used to a linked adjustment of the angle between the eyes (“vergence”) and the focus plain (“accommodation”). Recent proof-of-concept systems use up to three display planes, allowing us to experience discrete near, mid-range and far layer to focus on, but for a better, more immersive 3D experience we’ll need the ability to experience at almost continuous focal range.
The most promising solution to this problem is light field technology: For instance, Nvidia’s light field display prototype has shown successfully (though at low resolution) that it is possible to construct a light field image that allows placement of multiple objects at different focal planes or virtual distances. The Nvidia prototype uses a microlens array, much like in light field cameras from Lytro or Raytrix. Magic Leap is another company working on light field technology. While the company has teased a head-mounted light field display on several occasions, they have yet to explain how exactly their system works, let alone present a working prototype to the public.

Now, another company has entered the light field space. Head-mounted display maker Avegant has announced a new display that uses “a new method to create light fields” to simultaneously display multiple objects at different focal planes. While all digital light fields have discrete focal planes, according to Avegant CTO Edward Tang, the new technology can interpolate between these to create a “continuous, dynamic focal plane”. “This is a new optic that we’ve developed that results in a new method to create light fields,” says Tang. Continue reading

Aug 19

Displays: Fundamentals and Applications [Free Ebook]

Displays: Fundamentals and Applications [Free Ebook] The authors of “Displays: Fundamentals and Applications”, Rolf R. Hainich and Oliver Bimber, have recently made their book available online. In chapter nine, they take a comprehensive look at various 3D display technologies including light field displays.
The 599 page long book, which sells for 83 US-Dollars in Hardcover form, can now be downloaded free of charge for non-commercial purposes as a 64 MB PDF at displaysbook.info (under “Materials”).

Our book “Displays: Fundamentals and Applications” is now available free of charge for non-commercial purposes.
You can download the ebook (pdf, 599 pages, 360MB) from http://displaysbook.info (Material). The hardcopy can still be ordered from CRC Press.
If you think that this is of any value to you, please make a donation at www.krebshilfe.de or www.cancer.org.

Nov 05

Light-field powered Virtual Reality: Magic Leap secures 542 Million Dollars in Funding from Google and others

Light-field powered Virtual Reality: Magic Leap secures 542 Million Dollars in Funding from Google and others (image: Magic Leap) A rather secretive startup from Hollywood, Florida, recently made headlines for raising a spectacular investment for their vision of the next generation of Virtual Reality. Big names like Google, Qualcomm Ventures, Andreessen Horowitz, and others have put together the sum of 540 million US-Dollars for a company called Magic Leap, but the public isn’t even sure what the company is working on.

The official press release reads: “Magic Leap is going beyond the current perception of mobile computing, augmented reality, and virtual reality. We are transcending all three, and will revolutionize the way people communicate, purchase, learn, share and play.”
…and Magic Leap’s website doesn’t provide many details either.

The company is reportedly working on Dynamic Digitized Lightfield Signals” (Digital Lightfield, in short), a “biomimetic” technology that “respects how we function naturally as humans”. What that means precisely, the company doesn’t explain. However, Technology Review has dug up some interesting patent applications by Magic Leap which may give us a glimpse into what convinced their investors: Continue reading

Aug 12

Light Field Powered: First Smartphones with Holographic Displays Could Arrive within Two Years

Ostendo's Quantum Photonic Imager Chips produce real 3D images with depth (top: resulting image with diffuser, bottom: actual QPI array; Youtube Screenshot via InsightMediaTV1) Just a few years ago, mobile displays took a leap forward with increased pixel densities that ensure crisp images on realtively small screens. Today, most smartphones feature displays with up to 538 pixels per inch (ppi) – a resolution that is much higher than what the human eye can see. So what’s the next display innovation we can look forward to?
In her recent article on IEEE Spectrum, Sarah Lewin introduced two companies that are working on making what she calls “holographic” light field displays (i.e. glasses-free 3D displays) a reality.

Ostendo Technologies recently presented the results of nine years’ work at the Display Week conference: An array of 4×2 Quantum Photonic Imager chips (each consisting of LEDs, image processors and embedded rendering software) plus microlens array form a 1 megapixel (1024x768px, XGA resolution) prototype display which sends out light not into every direction – like conventional displays do – but rather into very narrow, collimated angles of light. This enables the prototype to emit different images into different directions, producing about 2,500 different perspective views, so the image and motion displayed appear consistent regardless of the viewer’s position. Continue reading