Nov 11

Lytro Development Kit lets NASA and others build Customized Light Field Cameras

Lytro Development Kit Illustration (actual may differ) - Lytro Development Kit lets NASA and others build Customized Light Field Cameras (image: Lytro) Following two products aimed at the consumer and pro-sumer camera markets, Lytro has released the Lytro Development Kit (LDK) which opens up the technology to anybody, for a price.

The Lytro Development Kit (LDK) [...] is designed for companies that want to explore developing custom light field cameras and applications for use cases outside of photography and storytelling. Continue reading

Oct 13

Researchers Develop Geometric Calibration Method for MLA-based Light Field Cameras using Line Features in RAW Images

^Researchers Develop Geometric Calibration Method for MLA-based Light Field Cameras using Line Features in RAW Images (picture: Bok et al. 2014) Calibration is an important part of light field photography: Image processing and image quality can be significantly improved when the physical properties of the camera are known. More specifically, geometric information about the microlenses in a microlens-array-based light field camera can help create more precise depth maps with fewer errors.

Yunsu Bok and colleagues from the Korean Advanced Institute of Science and Technology (KAIST) have devised a new method for geometric calibration which – in contrast to conventional methods – does not rely on processing sub-aperture images. Instead, they extract line features and compute a light field camera’s geometric parameters directly from RAW images. Continue reading

Aug 17

Ricoh Patents Dynamically Adjustable Multimode Lightfield Imaging System

Ricoh Patents Dynamically Adjustable Multimode Lightfield Imaging System (Fig. modified from Shroff & Berkner 2014) Ricoh researchers Sapna A. Shroff and Kathrin Berkner have lodged a patent application that describes a new way to dynamically adjust the recording parameters of a light field camera. The US Patent and Trademark Office has recently published patent application US20140192255, entitled “Dynamic Adjustment of Multimode Lightfield Imaging System Using Exposure Condition and Filter Position”, in which the authors use a non-homogeneous filter module at the pupil plane of a multimode imaging system, which can be moved and thus used to modify the imaging system’s exposure conditions. Continue reading

Aug 12

Light Field Powered: First Smartphones with Holographic Displays Could Arrive within Two Years

Ostendo's Quantum Photonic Imager Chips produce real 3D images with depth (top: resulting image with diffuser, bottom: actual QPI array; Youtube Screenshot via InsightMediaTV1) Just a few years ago, mobile displays took a leap forward with increased pixel densities that ensure crisp images on realtively small screens. Today, most smartphones feature displays with up to 538 pixels per inch (ppi) – a resolution that is much higher than what the human eye can see. So what’s the next display innovation we can look forward to?
In her recent article on IEEE Spectrum, Sarah Lewin introduced two companies that are working on making what she calls “holographic” light field displays (i.e. glasses-free 3D displays) a reality.

Ostendo Technologies recently presented the results of nine years’ work at the Display Week conference: An array of 4×2 Quantum Photonic Imager chips (each consisting of LEDs, image processors and embedded rendering software) plus microlens array form a 1 megapixel (1024x768px, XGA resolution) prototype display which sends out light not into every direction – like conventional displays do – but rather into very narrow, collimated angles of light. This enables the prototype to emit different images into different directions, producing about 2,500 different perspective views, so the image and motion displayed appear consistent regardless of the viewer’s position. Continue reading

Aug 05

Samsung Patents Modified Light Field Sensor with Monochrome Sub-Images

Fig. 6 from Samsung's patent application shows three exemplary colour-filtered light rays passing through microlenses to create monochrome sub-images (Fig. modified from Lee et al., 2014). In order to record colour images, camera sensors typically use a colour filter array consisting of red, green, and blue filters on top of the light-intensity sensing sub-pixels. After recording each sub-pixel’s light intensity, the so-called “demosaic” process combines four monochrome sub-pixels (2x red, 2x green, 1x blue) into a single pixel containing RGB colour information.
In microlens-based light field cameras, this “demosaic” job may result in a blur effect around the boundaries of objects in the final image.
Image Sensors World found a patent application by Samsung which can solve this blur-problem: In the patent application entitled “Photographing device and photographing method for taking picture by using a plurality of microlenses”, authors Tae-Hee Lee et al. propose moving the colour filter in front of the microlenses (instead of having them behind the microlenses), creating single-colour sub-images. Continue reading